EmSART – System requirements:

- Windows 7/8/10 or Linux with g++ version 4.8.4 (tested on Ubuntu 14.04)
- Nvidia CUDA 7.5 toolkit installed
- Multiple GPUs with a total memory size of the volume to reconstruct (16 or 32 bits per voxel)
 + some memory for the projection images (We use four GeForce Titan X with 12 GByte each).
- Enough RAM on host: There is no hard limit, but the more memory is available, the bigger the reconstruction can be.
- OpenMPI 1.6.5 installed for multi-GPU support

Start a reconstruction:

- For multi-GPU reconstruction with openMPI:
 - mpiexec -n #GPUsToUse EmSART -u configfile.cfg
- For single-GPU reconstruction without openMPI:
 - ./EmSART -u configfile.cfg

Configuration file settings:

Parameter	Possible values	Description
CudaDeviceID	For a default four GPU	List of the device IDs to use.
	setup: 0 1 2 3	
ProjectionFile	MRC image stack or DM4	Filename with the projection images. Note:
	file series with index in	EmSART limits the number of interpolation
	filename: file_01234.dm4	steps why the original unprocessed tilt
		series is used here. I.e. not the aligned
		stack as produced by IMOD.
OutVolumeFile	File name with ending .em,	Filename of the reconstructed volume.
	.mrc or .rec.	
RecDimensions	x-dimension must be a	Dimensions of the volume to reconstruct in
	multiple of 4, y-dimension	voxels. X/Y correspond to the projection
	must be even, z-dimension	image plane at 0° tilt, Z is the thickness.
	is unrestricted.	The Y-axis is the tilt axis.
VolumeShift	X Y Z value	Volume shift with units "pixels of the
		micrograph"; this makes the shift values
		independent of the voxel size/binning.
MarkerFile	EM file format	Filename of the markerfile containing tilt
		series alignment information. Format as
		used in "Clicker".
Lambda	1	Relaxation factor used in SART. As we run
		only one iteration, Lambda has to be equal
		to 1.
Iterations	1	Number of SART iterations. Experiments
		showed, that best quality is achieved with
		Lambda = 1 and iterations = 1.
UseFixPsiAngle	false	determines if the markerfile contains in-
		plane-rotation angles for each projection
		image. If set to true, Psi-Angle must be set.

PsiAngle	Angle in degrees	In-plane-rotation image, if above is true,
PhiAngle	0	beam declination (use with care, not well
FIIAligie	0	tested)
OverSampling	1-10 (more is possible but	Number of rays per pixel (for each
	impact decreases)	dimension). See also the super-sampling
		SART paper. Also note that a voxel size > 1
		corresponds to oversampling.
VoxelSize	1 = Same size as projection	Voxel size in pixels (the base unit in
	pixels; 2 = One Voxel has	EmSART is "1 pixel")
	the size of two pixels, etc.	
CtfMode	True/false	enable CTF correction, if true, CTF file must
	Filonomo of the ENA filo	be provided
CIFFIIe	Filename of the Elvi-file	Derocus values for each projection.
CTEDataEaa		CTE correction perometers: first number
CIFBELAFAC	360 0 0.01 0	gives the first maximum of the Theorings in
		the newer spectrum in pixels. No CTE
		correction is performed for frequencies
		below that value. The other three
		parameters (a, b, and c) define the
		damponing onvolono, whore
		$a_{a} = ax - bx^2 - cx^3$
		$env = e^{-an} e^{-an}$,
		three coefficients and who costiol
		frequency in 1/nm
	0 9 2 7	Covalue of the projection long needed for
CS	e.g. 2.7	CTE correction (in mm) can be emitted if
		Ctf Mode = false
Voltage	eg 300	Acceleration voltage of the microscope in
Voltage	C.g. 500	kV needed for CTE correction can be
		omitted if CtfMode = false
SkipFilter	True/false	Perform bandpass filtering on the
		projections or not before reconstruction
fourFilterLP	e.g. 1000	bandpass filter parameters in pixel: Low
	0.8000	pass
fourFilterLPS	250	Low pass sigma
fourFilterHP	0	High pass
fourFilterHPS	0	High pass sigma
SIRTCount	1:15 (a number equal to	Contrast = ordered subset size in super-
	the total number of	sampling SART paper (1=perfect for sub-
	projections would turn	tomo-avg, 10-15 = good contrast)
	SART equal to SIRT)	
BadPixelValue	X - Depends on micrograph	All pixels above X-times the mean value
	pixel values	will be filtered out to cancel out X-rays
CorrectBadPixels	True/false	Correct for bad pixels or not
AddTiltAngle	Angle in degrees	Rotate the volume along the tilt/Y-axis by X
-	_	degrees (not rad)
AddTiltXAngle	Angle in degrees	Rotate the volume along the X-axis by X
		degrees (not rad)

FP16Volume	True/false	Use 16Bit floats instead of 32bit to save
		memory
WriteVolumeAsFP16	True/false	If the one before is true, the result can be
		converted to 32bits before writing to disk
ProjectionScaleFactor	1 or 1000	Scale the images by 1000 (that's a good
		value) if you use 16 bits. If 32 bit floats,
		use 1
ProjectionNormalization	"std" or "mean"	normalize the projection images by
		standard deviation or alternatively by the
		mean value to normalize the tilt series:
		(image – mean)
		$image = {std}$
		or
		ima ao _ (image – mean)
		mean mean
WBP	True/false	false -> use SART not WBP. If set to "true",
		one can also use standard WBP with a
		ramp filter.

Tilt series alignment:

The marker file used to store the tilt series alignment information is similar to older TOM-toolbox markerfiles. Its structure is as follows:

- > One column for each projection image in the tilt series
- > 10 lines, where:
 - 1. Tilt angle in degrees
 - 2. X-position in pixel of marker in micrograph (a negative value indicates to skip the projection)
 - 3. Y-position in pixel of marker in micrograph (a negative value indicates to skip the projection)
 - 4. Not used
 - 5. X-shift in pixels
 - 6. Y-shift in pixels
 - 7. Not used
 - 8. Not used
 - 9. Magnification change (image scaling factor)
 - 10. In plane image rotation angle
- Third dimension is used for each clicked marker, but only the alignment information of the first marker is used.

The markerfile can be created either using the tilt series inspection and alignment tool "Clicker" or by converting an IMOD alignment using the following MATLAB script:

The matlab script will convert an IMOD aligment to a pseudo-marker file that can be used with EmSART. Just save the matrix as an EM-file:

m = ConvImod2EM('filenamebase');

emwrite(m, 'markerfile.em');

CTF correction:

The defocus values are given in a two-dimensional matrix saved in EM-file format. One row per projection, five columns where:

- 1. CC-value (not used in EmSART)
- 2. Lower defocus value
- 3. Upper defocus value (for astigmatism)
- 4. Astigmatism difference (equals column 3 minus 2)
- 5. Astigmatism angle in radians

Other CTF parameters are given in the reconstruction configuration file, such as Cs, acceleration voltage and dampening envelope.