Publications
Most projects were funded by the DFG, but also from the BMBF and the EU; Details can be found in the publications:
Full list of publications from Achilleas Frangakis, provided by Pubmed
-
Room temperature L1₀ phase transformation in binary CoPt nanostructures prepared by focused-electron-beam-induced deposition.
Related Articles Room temperature L1₀ phase transformation in binary CoPt nanostructures prepared by focused-electron-beam-induced deposition.
Nanotechnology. 2012 May 11;23(18):185702
Authors: Porrati F, Begun E, Winhold M, Schwalb ChH, Sachser R, Frangakis AS, Huth M
Abstract
CoPt-C binary alloys have been fabricated by focused-electron-beam-induced deposition by the simultaneous use of Co₂(CO)₈ and (CH₃)₃CH₃C₅H₄Pt as precursor gases. The alloys are made of CoPt nanoparticles embedded in a carbonaceous matrix. TEM investigations show that as-grown samples are in an amorphous phase. By means of a room temperature low-energy electron irradiation treatment the CoPt nanoparticles transform into face-centered tetragonal L1₀ nanocrystallites. In parallel, the system undergoes a transition from a superparamagnetic to a ferromagnetic state at room temperature. By variation of the post-growth irradiation dose the electrical and magneto-transport properties of the alloy can be continuously tuned.
PMID: 22499135 [PubMed]
-
Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures.
Related Articles Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14906-11
Authors: Saibil HR, Seybert A, Habermann A, Winkler J, Eltsov M, Perkovic M, Castaño-Diez D, Scheffer MP, Haselmann U, Chlanda P, Lindquist S, Tyedmers J, Frangakis AS
Abstract
Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.
PMID: 22927413 [PubMed - indexed for MEDLINE]
-
Three-dimensional visualization of the molecular architecture of cell-cell junctions in situ by cryo-electron tomography of vitreous sections.
Related Articles Three-dimensional visualization of the molecular architecture of cell-cell junctions in situ by cryo-electron tomography of vitreous sections.
Methods Mol Biol. 2013;961:97-117
Authors: Al-Amoudi A, Frangakis AS
Abstract
Cryo-electron tomography of vitreous sections is currently the only method for visualizing the eukaryotic ultrastructure at close to native state with molecular resolution. Here, we describe the detailed procedure of how to prepare suitable vitreous sections from mammalian skin for cryo-electron tomography, how to align the projection images of the tilt-series, and finally how to perform sub-tomogram averaging on macromolecular complexes with periodic arrangement such as desmosomes.
PMID: 23325637 [PubMed - indexed for MEDLINE]
-
3D Ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography.
Related Articles 3D Ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography.
PLoS One. 2012;7(12):e53293
Authors: Hummel E, Guttmann P, Werner S, Tarek B, Schneider G, Kunz M, Frangakis AS, Westermann B
Abstract
The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology.
PMID: 23300909 [PubMed - indexed for MEDLINE]
-
CENP-A arrays are more condensed than canonical arrays at low ionic strength.
Related Articles CENP-A arrays are more condensed than canonical arrays at low ionic strength.
Biophys J. 2014 Feb 18;106(4):875-82
Authors: Geiss CP, Keramisanou D, Sekulic N, Scheffer MP, Black BE, Frangakis AS
Abstract
The centromeric histone H3 variant centromeric protein A (CENP-A), whose sequence is the least conserved among all histone variants, is responsible for specifying the location of the centromere. Here, we present a comprehensive study of CENP-A nucleosome arrays by cryo-electron tomography. We see that CENP-A arrays have different biophysical properties than canonical ones under low ionic conditions, as they are more condensed with a 20% smaller average nearest-neighbor distance and a 30% higher nucleosome density. We find that CENP-A nucleosomes have a predominantly crossed DNA entry/exit site that is narrowed on average by 8°, and they have a propensity to stack face to face. We therefore propose that CENP-A induces geometric constraints at the nucleosome DNA entry/exit site to bring neighboring nucleosomes into close proximity. This specific property of CENP-A may be responsible for generating a fundamental process that contributes to increased chromatin fiber compaction that is propagated under physiological conditions to form centromeric chromatin.
PMID: 24559990 [PubMed - indexed for MEDLINE]
-
Correlative light- and electron microscopy with chemical tags.
Related Articles Correlative light- and electron microscopy with chemical tags.
J Struct Biol. 2014 May;186(2):205-13
Authors: Perkovic M, Kunz M, Endesfelder U, Bunse S, Wigge C, Yu Z, Hodirnau VV, Scheffer MP, Seybert A, Malkusch S, Schuman EM, Heilemann M, Frangakis AS
Abstract
Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve protein-specific labeling, and to perform multicolor imaging. We show that synthetic fluorophores preserve their post-embedding fluorescence in the presence of uranyl acetate. Post-embedding fluorescence is of such quality that the specimen can be prepared with identical protocols for scanning electron microscopy (SEM) and transmission electron microscopy (TEM); this is particularly valuable when singular or otherwise difficult samples are examined. We show that synthetic fluorophores give bright, well-resolved signals in super-resolution light microscopy, enabling us to superimpose light microscopic images with a precision of up to 25 nm in the x-y plane on electron micrographs. To exemplify the preservation quality of our new method we visualize the molecular arrangement of cadherins in adherens junctions of mouse epithelial cells.
PMID: 24698954 [PubMed - indexed for MEDLINE]
-
Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography.
Related Articles Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography.
Nat Cell Biol. 2015 May;17(5):605-14
Authors: Eltsov M, Dubé N, Yu Z, Pasakarnis L, Haselmann-Weiss U, Brunner D, Frangakis AS
Abstract
The closure of epidermal openings is an essential biological process that causes major developmental problems such as spina bifida in humans if it goes awry. At present, the mechanism of closure remains elusive. Therefore, we reconstructed a model closure event, dorsal closure in fly embryos, by large-volume correlative electron tomography. We present a comprehensive, quantitative analysis of the cytoskeletal reorganization, enabling separated epidermal cells to seal the epithelium. After establishing contact through actin-driven exploratory filopodia, cells use a single lamella to generate 'roof tile'-like overlaps. These shorten to produce the force, 'zipping' the tissue closed. The shortening overlaps lack detectable actin filament ensembles but are crowded with microtubules. Cortical accumulation of shrinking microtubule ends suggests a force generation mechanism in which cortical motors pull on microtubule ends as for mitotic spindle positioning. In addition, microtubules orient filopodia and lamellae before zipping. Our 4D electron microscopy picture describes an entire developmental process and provides fundamental insight into epidermal closure.
PMID: 25893916 [PubMed - in process]
-
PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection.
Related Articles PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection.
Cell Host Microbe. 2015 Jan 14;17(1):58-71
Authors: McEwan DG, Richter B, Claudi B, Wigge C, Wild P, Farhan H, McGourty K, Coxon FP, Franz-Wachtel M, Perdu B, Akutsu M, Habermann A, Kirchof A, Helfrich MH, Odgren PR, Van Hul W, Frangakis AS, Rajalingam K, Macek B, Holden DW, Bumann D, Dikic I
Abstract
The host endolysosomal compartment is often manipulated by intracellular bacterial pathogens. Salmonella (Salmonella enterica serovar Typhimurium) secrete numerous effector proteins, including SifA, through a specialized type III secretion system to hijack the host endosomal system and generate the Salmonella-containing vacuole (SCV). To form this replicative niche, Salmonella targets the Rab7 GTPase to recruit host membranes through largely unknown mechanisms. We show that Pleckstrin homology domain-containing protein family member 1 (PLEKHM1), a lysosomal adaptor, is targeted by Salmonella through direct interaction with SifA. By binding the PLEKHM1 PH2 domain, Salmonella utilize a complex containing PLEKHM1, Rab7, and the HOPS tethering complex to mobilize phagolysosomal membranes to the SCV. Depletion of PLEKHM1 causes a profound defect in SCV morphology with multiple bacteria accumulating in enlarged structures and significantly dampens Salmonella proliferation in multiple cell types and mice. Thus, PLEKHM1 provides a critical interface between pathogenic infection and the host endolysosomal system.
PMID: 25500191 [PubMed - in process]
-
Super-sampling SART with ordered subsets.
Related Articles Super-sampling SART with ordered subsets.
J Struct Biol. 2014 Nov;188(2):107-15
Authors: Kunz M, Frangakis AS
Abstract
In tomography, the quality of the reconstruction is essential because the complete cascade of the subsequent analysis is based on it. To date, weighted back-projection (WBP) has been the most commonly used technique due to its versatility and performance in sub-tomogram averaging. Here we present super-sampling SART that is based on the simultaneous algebraic reconstruction technique. While algebraic reconstruction techniques typically produce better contrast and lately showed a significant improvement in terms of processing speed, sub-tomogram averages derived from those reconstructions were inferior in resolution compared to those derived from WBP data. Super-sampling SART, however, outperforms both in term of contrast and the resolution achieved in sub-tomogram averaging several other tested methods and in particular WBP. The main feature of super-sampling SART, as the name implies, is the super-sampling option - by which parameter-based up-sampling and down-sampling are used to reduce artifacts. In particular, the aliasing that is omnipresent in the reconstruction can be practically eliminated without a significant increase in the computational time. Furthermore, super-sampling SART reaches convergence within a single iteration, making the processing time comparable to WBP, and eliminating the ambiguity of parameter-controlled convergence times. We find that grouping of projections increases the contrast, while when projections are used individually the resolution can be maximized. Using sub-tomogram averaging of ribosomes as a test case, we show that super-sampling SART achieves equal or better sub-tomogram averaging results than WBP, which is of particular importance in cryo-electron tomography.
PMID: 25281496 [PubMed - in process]
-
M-free: scoring the reference bias in sub-tomogram averaging and template matching.
Related Articles M-free: scoring the reference bias in sub-tomogram averaging and template matching.
J Struct Biol. 2014 Jul;187(1):10-9
Authors: Yu Z, Frangakis AS
Abstract
Cryo-electron tomography provides a snapshot of the cellular proteome. With template matching, the spatial positions of various macromolecular complexes within their native cellular context can be detected. However, the growing awareness of the reference bias introduced by the cross-correlation based approaches, and more importantly the lack of a reliable confidence measurement in the selection of these macromolecular complexes, has restricted the use of these applications. Here we propose a heuristic, in which the reference bias is measured in real space in an analogous way to the R-free value in X-ray crystallography. We measure the reference bias within the mask used to outline the area of the template, and do not modify the template itself. The heuristic works by splitting the mask into a working and a testing area in a volume ratio of 9:1. While the working area is used during the calculation of the cross-correlation function, the information from both areas is explored to calculate the M-free score. We show using artificial data, that the M-free score gives a reliable measure for the reference bias. The heuristic can be applied in template matching and in sub-tomogram averaging. We further test the applicability of the heuristic in tomograms of purified macromolecules, and tomograms of whole Mycoplasma cells.
PMID: 24859794 [PubMed - indexed for MEDLINE]
-
Special issue on electron tomography.
Related Articles Special issue on electron tomography.
J Struct Biol. 2012 May;178(2):75
Authors: Medalia O, Frangakis A
PMID: 22445943 [PubMed - indexed for MEDLINE]
-
Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure.
Related Articles Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure.
EMBO J. 2012 Apr 4;31(7):1644-53
Authors: Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K
Abstract
How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures.
PMID: 22343941 [PubMed - indexed for MEDLINE]
-
Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.
Related Articles Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.
Nat Cell Biol. 2012 Mar;14(3):249-56
Authors: Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S
Abstract
The shear-responsive transcription factor Krüppel-like factor 2 (KLF2) is a critical regulator of endothelial gene expression patterns induced by atheroprotective flow. As microRNAs (miRNAs) post-transcriptionally control gene expression in many pathogenic and physiological processes, we investigated the regulation of miRNAs by KLF2 in endothelial cells. KLF2 binds to the promoter and induces a significant upregulation of the miR-143/145 cluster. Interestingly, miR-143/145 has been shown to control smooth muscle cell (SMC) phenotypes; therefore, we investigated the possibility of transport of these miRNAs between endothelial cells and SMCs. Indeed, extracellular vesicles secreted by KLF2-transduced or shear-stress-stimulated HUVECs are enriched in miR-143/145 and control target gene expression in co-cultured SMCs. Extracellular vesicles derived from KLF2-expressing endothelial cells also reduced atherosclerotic lesion formation in the aorta of ApoE(-/-) mice. Combined, our results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.
PMID: 22327366 [PubMed - indexed for MEDLINE]
-
Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.
Related Articles Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.
J Struct Biol. 2012 May;178(2):207-14
Authors: Scheffer MP, Eltsov M, Bednar J, Frangakis AS
Abstract
In this study, electron tomograms of plunge-frozen isolated chromatin in both open and compacted form were recorded. We have resolved individual nucleosomes in these tomograms in order to provide a 3D view of the arrangement of nucleosomes within chromatin fibers at different compaction states. With an optimized template matching procedure we obtained accurate positions and orientations of nucleosomes in open chromatin in "low-salt" conditions (5 mM NaCl). The mean value of the planar angle between three consecutive nucleosomes is 70°, and the mean center-to-center distance between consecutive nucleosomes is 22.3 nm. Since the template matching approach was not effective in crowded conditions, for nucleosome detection in compact fibers (40 mM NaCl and 1 mM MgCl(2)) we developed the nucleosome detection procedure based on the watershed algorithm, followed by sub-tomogram alignment, averaging, and classification by Principal Components Analysis. We find that in compact chromatin the nucleosomes are arranged with a predominant face-to-face stacking organization, which has not been previously shown for native isolated chromatin. Although the path of the DNA cannot be directly seen in compact conditions, it is evident that the nucleosomes stack with their dyad axis aligned in forming a "double track" conformation which is a consequence of DNA joining adjacent nucleosome stacks. Our data suggests that nucleosome stacking is an important mechanism for generating chromatin compaction in vivo.
PMID: 22138167 [PubMed - indexed for MEDLINE]
-
Binary Pt-Si nanostructures prepared by focused electron-beam-induced deposition.
Related Articles Binary Pt-Si nanostructures prepared by focused electron-beam-induced deposition.
ACS Nano. 2011 Dec 27;5(12):9675-81
Authors: Winhold M, Schwalb CH, Porrati F, Sachser R, Frangakis AS, Kämpken B, Terfort A, Auner N, Huth M
Abstract
Binary systems of Pt-Si are prepared by electron-beam-induced deposition using the two precursors, trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPt(Me)(3)) and neopentasilane (Si(SiH(3))(4)), simultaneously. By varying the relative flux of the two precursors during deposition, we are able to study composites containing platinum and silicon in different ratios by means of energy-dispersive X-ray spectroscopy, atomic force microscopy, electrical transport measurements, and transmission electron microscopy. The results show strong evidence for the formation of a binary, metastable Pt(2)Si(3) phase, leading to a maximum in the conductivity for a Si/Pt ratio of 3:2.
PMID: 22050515 [PubMed - indexed for MEDLINE]
-
Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.
Related Articles Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.
J Control Release. 2009 Jul 1;137(1):78-86
Authors: Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Büchel C, von Briesen H, Kreuter J
Abstract
The blood-brain barrier (BBB) represents a considerable obstacle to brain entry of the majority of drugs and thus severely restricts the therapy of many serious CNS diseases including brain tumours, brain HIV, Alzheimer and other neurodegenerative diseases. The use of nanoparticles coated with polysorbate 80 or with attached apolipoprotein E has enabled the delivery of drugs across the BBB. However, the mechanism of this enhanced transport is still not fully understood. In this present study, human serum albumin nanoparticles, with covalently bound apolipoprotein E (Apo E) as a targetor as well as without apolipoprotein E, were manufactured and injected intravenously into SV 129 mice. The animals were sacrificed after 15 and 30 min, and their brains were examined by transmission electron microscopy. Only the nanoparticles with covalently bound apolipoprotein E were detected in brain capillary endothelial cells and neurones, whereas no uptake into the brain was detectable with nanoparticles without apolipoprotein E. We have also demonstrated uptake of the albumin/ApoE nanoparticles into mouse endothelial (b.End3) cells in vitro and their intracellular localisation. These findings indicate that nanoparticles with covalently bound apolipoprotein E are taken up into the cerebral endothelium by an endocytic mechanism followed by transcytosis into brain parenchyma.
PMID: 19285109 [PubMed - indexed for MEDLINE]
-
Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana.
Related Articles Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana.
Biochim Biophys Acta. 2009 Jul;1787(7):905-12
Authors: Veith T, Brauns J, Weisheit W, Mittag M, Büchel C
Abstract
Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.
PMID: 19397889 [PubMed - indexed for MEDLINE]
-
Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins.
Related Articles Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins.
Biochim Biophys Acta. 2010 May;1797(5):543-9
Authors: Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J
Abstract
The ultrafast carotenoid to chlorophyll a energy transfer dynamics of the isolated fucoxanthin-chlorophyll proteins FCPa and FCPb from the diatom Cyclotella meneghiniana was investigated in a comprehensive study using transient absorption in the visible and near infrared spectral region as well as static fluorescence spectroscopy. The altered oligomerization state of both antenna systems results in a more efficient energy transfer for FCPa, which is also reflected in the different chlorophyll a fluorescence quantum yields. We therefore assume an increased quenching in the higher oligomers of FCPb. The influence of the carotenoid composition was investigated using FCPa and FCPb samples grown under different light conditions and excitation wavelengths at the blue (500nm) and red (550nm) wings of the carotenoid absorption. The different light conditions yield in altered amounts of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Since no significant dynamic changes are observed for high light and low light samples, the contribution of the xanthophyll cycle pigments to the energy transfer is most likely negligible. On the contrary, the observed dynamics change drastically for the different excitation wavelengths. The analyses of the decay associated spectra of FCPb suggest an altered energy transfer pathway. For FCPa even an additional time constant was found after excitation at 500nm. It is assigned to the intrinsic lifetime of either the xanthophyll cycle carotenoids or more probable the blue absorbing fucoxanthins. Based on our studies we propose a detailed model explaining the different excitation energy transfer pathways in FCPa.
PMID: 20117075 [PubMed - indexed for MEDLINE]
-
Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins.
Related Articles Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins.
J Exp Bot. 2010 Jun;61(11):3079-87
Authors: Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C
Abstract
Fucoxanthin chlorophyll proteins (Fcps), the light-harvesting antennas of heterokont algae, are encoded by a multigene family and are highly similar with respect to their molecular masses as well as to their pigmentation, making it difficult to purify single Fcps. In this study, a hexa-histidine tag was genetically added to the C-terminus of the FcpA protein of the pennate diatom Phaeodactylum tricornutum. A transgenic strain expressing the recombinant His-tagged FcpA protein in addition to the endogenous wild type Fcps was created. This strategy allowed, for the first time, the purification of a specific, stable trimeric Fcp complex. In addition, a pool of various trimeric Fcps was also purified from the wild-type cells using sucrose density gradient ultracentrifugation and gel filtration. In both the His-tagged and the wild-type Fcps, excitation energy coupling between fucoxanthin and chlorophyll a was intact and the existence of a chlorophyll a/fucoxanthin excitonic dimer was demonstrated using circular dichroism spectroscopy. Mass spectrometric analyses of the trimeric His-tagged complex indicated that it is composed of FcpA and FcpE polypeptides. It is confirmed here that a trimer is the basic organizational unit of Fcps in P. tricornutum. From circular dichroism spectra, it is proposed that the organization of the pigments on the polypeptide backbone of Fcps is a conserved feature in the case of chlorophyll a/c containing algae.
PMID: 20478968 [PubMed - indexed for MEDLINE]
-
Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.
Related Articles Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.
J Drug Target. 2010 Dec;18(10):842-8
Authors: Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Büchel C, Kreuter J
Abstract
Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.
PMID: 20849354 [PubMed - indexed for MEDLINE]
-
Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms.
Related Articles Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms.
Biochim Biophys Acta. 2012 Jul;1817(7):1044-52
Authors: Gundermann K, Büchel C
Abstract
Fucoxanthin-chlorophyll complexes (FCP) from the centric diatom Cyclotella meneghiniana were isolated and the trimeric FCPa complex was reconstituted into liposomes at different lipid to Chl a ratios. The fluorescence yield of the complexes in different environments was calculated from room temperature fluorescence emission spectra and compared to the aggregated state of FCPa. FCPa surrounded by high amounts of lipids resembled detergent solubilised complexes and with decreasing lipid levels, i.e. in a situation where protein contacts were increasingly favoured, the fluorescence yield of FCPa gradually decreased. In addition, the yield displayed a strong pH-dependency in case of lower lipid contents. The further reduction in fluorescence yield brought about by the conversion of diadinoxanthin to diatoxanthin was pH independent and only depended on the amount of diatoxanthin synthesised. The implications of these data for non-photochemical quenching in centric diatoms are discussed.
PMID: 22440329 [PubMed - indexed for MEDLINE]
-
Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana.
Related Articles Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana.
J Exp Bot. 2012 Jun;63(10):3673-81
Authors: Juhas M, Büchel C
Abstract
Analysis of photosystem I (PSI) complexes from Cyclotella meneghiniana cultured under different growth conditions led to the identification of three groups of antenna proteins, having molecular weights of around 19, 18, and 17 kDa. The 19-kDa proteins have earlier been demonstrated to be more peripherally bound to PSI, and their amount in the PSI complexes was significantly reduced when the iron supply in the growth medium was lowered. This polypeptide was almost missing, and thus the total amount of fucoxanthin-chlorophyll proteins (Fcps) bound to PSI was reduced as well. When treating cells with high light in addition, no further changes in antenna polypeptide composition were detected. Xanthophyll cycle pigments were found to be bound to all Fcps of PSI. However, PSI of high light cultures had a significantly higher diatoxanthin to diadinoxanthin ratio, which is assumed to protect against a surplus of excitation energy. PSI complexes from the double-stressed cultures (high light plus reduced iron supply) were slightly more sensitive against destruction by the detergent treatment. This could be seen as a higher 674-nm emission at 77 K in comparison to the PSI complexes isolated from other growth conditions. Two major emission bands of the Fcps bound to PSI at 77 K could be identified, whereby chlorophyll a fluorescing at 697 nm was more strongly coupled to the PSI core than those fluorescing at 685 nm. Thus, the build up of the PSI antenna of several Fcp components enables variable reactions to several stress factors commonly experienced by the diatoms in vivo, in particular diatoxanthin enrichment under high light and reduction of antenna size under reduced iron conditions.
PMID: 22442408 [PubMed - indexed for MEDLINE]
-
Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum.
Related Articles Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum.
J Exp Bot. 2012 Sep;63(15):5607-12
Authors: Dambek M, Eilers U, Breitenbach J, Steiger S, Büchel C, Sandmann G
Abstract
The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3'-HO group results in the formation of fucoxanthin.
PMID: 22888128 [PubMed - indexed for MEDLINE]
-
Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum.
Related Articles Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum.
Biochim Biophys Acta. 2013 Mar;1827(3):303-10
Authors: Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C
Abstract
Diatoms are major contributors to the photosynthetic productivity of marine phytoplankton. In these organisms, fucoxanthin-chlorophyll proteins (FCPs) serve as light-harvesting proteins. We have explored the FCP complexes in Phaeodactylum tricornutum under low light (LL) and high light (HL) conditions. Sub-fractionating the pool of major FCPs yielded different populations of trimeric complexes. Only Lhcf and Lhc-like proteins were found in the trimers. Under LL, the first polypeptide fraction contained six different Lhcfs and was mainly composed of Lhcf10. It was characterised by the highest amount of fucoxanthin (Fx). The second was dominated by Lhcf10, Lhcf5 and Lhcf2, and had a lower Fx/Chl c ratio. Little Fx/Chl c also characterised the most abundant FCP complexes, found in fraction 3, composed mainly of Lhcf5. These FCPs bound Fx molecules with the strongest bathochromic shift. The last two fractions contained FCP complexes that were built mainly of Lhcf4, harbouring more Fx molecules that absorbed at shorter wavelengths. Under HL, the same main polypeptides were retrieved in the different fractions and spectroscopic features were almost identical except for a higher diadinoxanthin content. The total amount of Lhcf5 was reduced under HL, whereas the amount of the last two fractions and thereby Lhcf4 was increased. Lhcf11 was identified in different LL fractions, but not detected in any HL fraction, while two new Lhc-like proteins were only found under HL. This is the first report on different trimeric FCP complexes in pennate diatoms, which differ in polypeptide composition and pigmentation, and are differentially expressed by light.
PMID: 23142526 [PubMed - indexed for MEDLINE]
-
Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana.
Related Articles Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana.
Biochim Biophys Acta. 2014 Sep;1837(9):1507-13
Authors: Ramanan C, Berera R, Gundermann K, van Stokkum I, Büchel C, van Grondelle R
Abstract
Photosynthetic organisms have developed vital strategies which allow them to switch from a light-harvesting to an energy dissipative state at the level of the antenna system in order to survive the detrimental effects of excess light illumination. These mechanisms are particularly relevant in diatoms, which grow in highly fluctuating light environments and thus require fast and strong response to changing light conditions. We performed transient absorption spectroscopy on FCPa, the main light-harvesting antenna from the diatom Cyclotella meneghiniana, in the unquenched and quenched state. Our results show that in quenched FCPa two quenching channels are active and are characterized by differing rate constants and distinct spectroscopic signatures. One channel is associated with a faster quenching rate (16ns⁻¹) and virtually no difference in spectral shape compared to the bulk unquenched chlorophylls, while a second channel is associated with a slower quenching rate (2.7ns⁻¹) and exhibits an increased population of red-emitting states. We discuss the origin of the two processes in the context of the models proposed for the regulation of photosynthetic light-harvesting. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
PMID: 24576451 [PubMed - indexed for MEDLINE]
-
Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K.
Related Articles Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K.
Biochim Biophys Acta. 2014 Jun;1837(6):899-907
Authors: Chukhutsina VU, Büchel C, van Amerongen H
Abstract
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin-chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.
PMID: 24582663 [PubMed - indexed for MEDLINE]
-
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Related Articles A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
FEBS J. 2014 May;281(9):2299-311
Authors: Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C
Abstract
Diatoms possess several genes for proteins of the cryptochrome/photolyase family. A typical sequence for a plant cryptochrome was not found in our analysis of the Phaeodactylum tricornutum genome, but one protein grouped with higher plant and green algal cryptochromes. This protein, CryP, binds FAD and 5,10-methenyltetrahydrofolate, according to our spectroscopic studies on heterologously expressed protein. 5,10-Methenyltetrahydrofolate binding is a feature common to both cyclobutane pyrimidine dimer photolyases and DASH cryptochromes. In recombinant CryP, however, the FAD chromophore was present in its neutral radical state and had a red-shifted absorption maximum at 637 nm, which is more characteristic for a DASH cryptochrome than a cyclobutane pyrimidine dimer photolyase. Upon illumination with blue light, the fully reduced state of FAD was formed in the presence of reductant. Expression of CryP was silenced by antisense approaches, and the resulting cell lines showed increased levels of proteins of light-harvesting complexes, the Lhcf proteins, in vivo. In contrast, the levels of proteins active in light protection, the Lhcx proteins, were reduced. Thus, CryP cannot be directly grouped with known members of the cryptochrome/photolyase family. Of all P. tricornutum proteins, it is the most similar in sequence to a plant cryptochrome, and is involved in the regulation of light-harvesting protein expression, but shows spectroscopic features and a chromophore composition that are most typical of a DASH cryptochrome.
PMID: 24628952 [PubMed - indexed for MEDLINE]
-
Evolution and function of light harvesting proteins.
Related Articles Evolution and function of light harvesting proteins.
J Plant Physiol. 2015 Jan 1;172:62-75
Authors: Büchel C
Abstract
Photosynthetic eukaryotes exhibit very different light-harvesting proteins, but all contain membrane-intrinsic light-harvesting complexes (Lhcs), either as additional or sole antennae. Lhcs non-covalently bind chlorophyll a and in most cases another Chl, as well as very different carotenoids, depending on the taxon. The proteins fall into two major groups: The well-defined Lhca/b group of proteins binds typically Chl b and lutein, and the group is present in the 'green lineage'. The other group consists of Lhcr/Lhcf, Lhcz and Lhcx/LhcSR proteins. The former are found in the so-called Chromalveolates, where they mostly bind Chl c and carotenoids very efficient in excitation energy transfer, and in their red algae ancestors. Lhcx/LhcSR are present in most Chromalveolates and in some members of the green lineage as well. Lhcs function in light harvesting, but also in photoprotection, and they influence the organisation of the thylakoid membrane. The different functions of the Lhc subfamilies are discussed in the light of their evolution.
PMID: 25240794 [PubMed - in process]
-
Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex.
Related Articles Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex.
Biochim Biophys Acta. 2015 Feb;1847(2):241-7
Authors: Gelzinis A, Butkus V, Songaila E, Augulis R, Gall A, Büchel C, Robert B, Abramavicius D, Zigmantas D, Valkunas L
Abstract
Fucoxanthin-chlorophyll protein (FCP) is the key molecular complex performing the light-harvesting function in diatoms, which, being a major group of algae, are responsible for up to one quarter of the total primary production on Earth. These photosynthetic organisms contain an unusually large amount of the carotenoid fucoxanthin, which absorbs the light in the blue-green spectral region and transfers the captured excitation energy to the FCP-bound chlorophylls. Due to the large number of fucoxanthins, the excitation energy transfer cascades in these complexes are particularly tangled. In this work we present the two-color two-dimensional electronic spectroscopy experiments on FCP. Analysis of the data using the modified decay associated spectra permits a detailed mapping of the excitation frequency dependent energy transfer flow with a femtosecond time resolution.
PMID: 25445318 [PubMed - indexed for MEDLINE]
-
Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability.
Related Articles Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability.
Photosynth Res. 2015 Feb;123(2):157-65
Authors: Röding A, Dietzel L, Schlicke H, Grimm B, Sandmann G, Büchel C
Abstract
The consequences of ketocarotenoid production in transgenic tobacco (Nicotiana tabacum) plants expressing a Chlamydomonas reinhardtii gene encoding a β-carotene ketolase were examined concerning the functionality of the photosynthetic apparatus. T1 plants produced less photosynthetic pigments per dry weight, but Chl a/Chl b ratios remained unchanged. Almost as much ketocarotenoids as accessory xanthophylls accumulated per Chl a molecule. These ketocarotenoids were found mainly in the thylakoid membranes, but were not functionally bound to light-harvesting complexes, although LHCII is known to be able to bind astaxanthin. On the contrary, high amounts of ketocarotenoids probably changed the properties of the lipid phase of the thylakoids, thereby reducing the stability of photosystem II supercomplexes and LHCII trimers and ultimately decreasing grana formation. In addition, photosystem II function in electron transport was impaired, and plants exhibited less non-photochemical quenching compared to wild-type plants. Thus, in order not to disturb vital functions of the plants, production of astaxanthin and other nutritionally valuable ketocarotenoids apparently requires ways to sequester the additional carotenoids to plastoglobuli.
PMID: 25366829 [PubMed - in process]